

GPM

Global Precipitation Measurement

- GPM Science for Industry
- Eric Smith; NASA/Goddard Space Flight Center
- May 2001

GPM's Key Science Theme

Global Water & Energy Cycle

- GOAL: Observe, understand, & model Earth system to learn how it is changing, & consequences for life on Earth.
- SOLUTION: Establish existence (or absence) of trend in rate of global water cycle -- acceleration would lead to faster evaporation, increased global average precipitation, & general increase in extremes, particularly droughts & floods.

GPM will extend TRMM's observations of rainfall rates to higher latitudes thus yielding more complete and accurate representation of global water cycle.

Advanced rainfall measurement core satellite will make detailed & accurate estimates of precipitation structure & microphysical properties -- while constellation of drone satellites flying passive microwave radiometers will provide required temporal sampling of highly variable precipitation systems.

Uncertainty in global tropical rainfall estimates has been reduced from 50% to 25% using TRMM data

Global Water Budget & Water Cycle

General Equation

GPM

$$S = P - E - DIV - RO$$

Oceanic Water Budget

total water tendency (vapor or cloud water)

3D vapor or cloud water divergence

evaporation sublimation

condensation deposition

vertical divergence of vertical eddy transport of vapor or cloud water

$$\check{Z}\overline{q_{v_v}(p)} / \check{Z}_{t} = -\nabla \bullet \overrightarrow{V}(p) q_{v_v}(p) - \check{Z}\overline{\omega} q_{v_v}(p) / \check{Z}_{p_v}$$

$$+ \overline{e(p)}$$

$$- \overline{\mathbf{c}(\mathbf{p})}$$

$$\check{Z}\overline{\left[q_{V}\left(p\right)'\right]\omega\left(p\right)'}\,/\,\check{Z}\!\rho$$

$$- \ \overline{e\left(p\right)} \ + \ \overline{c\left(p\right)}$$

$$\check{Z}\,\overline{[q_{V}(p)']\;\omega_{c}(p)'}\,/\,\check{Z}\!p$$

$$\overline{\mathbf{W_t}} =$$

$$\overline{\overrightarrow{\mathbf{U}} \bullet \nabla \mathbf{W}}$$
 -

$$\overline{\overrightarrow{\mathbf{U}}} \bullet \nabla W_{\mathbf{C}}$$

column vapor & cloud water storage

vapor advection

cloud water advection

evaporation

 $\overline{\mathbf{E}}$

precipitation

Ē

Continental Water Budget -- Not Same Problem

$$\overline{\mathsf{S}}$$

$$= \quad - \quad \overline{\overrightarrow{U} \bullet \nabla \ q_1}$$

- <u>E</u>

soil moisture/ surface water/ surface snow/ice storage interflow (water advection) [bulldozers] [dump trucks] [nuclear bombs] [continental drift] surface runoff & base flow & recharge

precipitation deposition tree leaf-needle drip canopy snow blowoff

Ē

evaporation [ground/leaf/snow] transpiration or ET sublimation

TRMM 1-day coverage

GPM Reference Concept

OBJECTIVE: Understand Horizontal & Vertical Structure of Rainfall & Its Microphysical Nature. Train & Calibrate Algorithms for Constellation Radiometers.

OBJECTIVE: Provide Sufficient Sampling to Reduce Uncertainty in Short-term Rainfall Accumulations. Extend Scientific and Societal Applications.

Core Satellite

- TRMM-Like S/C, NASA
- H2A Launch, NASDA
- Non-Sun Synchronous Orbit
 - ~ 65° Inclination
 - ~450 km Altitude
- Dual Frequency Radar, NASDA Ku & Ka Bands
 - ~ 4 km Horizontal Resolution
 - ~250 m Vertical Resolution
- Multifrequency Radiometer, NASA 10.7, 19, 22, 37, 85 GHz V&H Pol

Constellation Satellites

- Dedicated Small or Pre-existing Experimental & Operational Satellites with PMW
 Radiometers
- Revisit Time 3-Hour goal
- Sun-Synchronous Polar Orbits
 ~600 km Altitude

Precipitation Validation Sites

• Selected & Globally Distributed Ground- Based Supersites (polarimetric radar, radiometer, raingages, & disdrometers) & Dense Regional Raingage Networks

Global Precipitation <u>Processing</u> Center

• Produces Global Precipitation Data Product Streams Defined by GPM Partners

Near Term Satellite Data Streams for TRMM/EOS Eras

from Passive Microwave Radiometers & Precipitation Radars [at left are actual (bold) nodal crossing times (DN) or non-sun-synch labels]

					[at lei	ı are a	icidal	(DOIG)	nodal	Cross	mg um	ies (Di	N) OF I	1011-SU	m-sync.	n iabe	15]			
GPM	•			Con	tinuous	Geosy	ynchro	nous S	atellite	Cover	rage by	GOES	E/W,	METE	COSAT,	& GN	IS			Ø
CY 86-05	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05
0530DN SSM/I			DMSP	F8			F11			F13			F14					DMSP	F16	
USSUDN SSMIS					DMSF	F10				F12					F15					
0830 _{DN} SSM/I 0830 _{DN}												N	OAA-J			NOA	A_I		DMS NOAA	P F17
MSU Ø AMSU-A									I	300000000			000000000			NOA	A-L			-14
0730dn msu Ø amsu-a								NO.	AA-D				NOAA		ИМ (35	inc)		NOAA	-M	
NSS PR/TMI															MM (55	incy			ential (Gap
0130 _{DN} AMSR	R-E															•		EOS A		
1030 _{DN} AMSI	R-J																	A	DEOS	
♦ INSTRUM□EN□TS			_	referr	EY ed PM ate PM		_													
NUTS																				

GPM Science for Industry: Eric Smith

Projected Satellite Data Streams for GPM Era

from Passive Microwave Radiometers & Precipitation Radars [at left are either actual (bold) or orthodox (paren) nodal crossing times (DN or AN) or non-sun-synch labels]

GPM	♦			Continu	ious G	eosync	hronou	s Satel	lite Co	verage	by GO	DES E/V	W, ME	TEOS	AT/MS	G, & G	SMS			Ø
CY 99-18	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
	DM	SP F14				_							İ							
SSM/I O530DN SSMIS				DI	ASP F1	6		F18					F20				NI	OESS	C3	
(0530DN) CMIS]	DMSP F	 15																	
0830 _{DN} SSM/I							DMSP	F17			F19				NI NI	POESS	C1			
(0830DN) CMIS	NOA	A-J	NO.	AA-L			NO	AA-N			NO)AA-N			111	OESS	CI			
MSU Ø AMSU-A						MOA	. 3.5		NP	P-ATM	S		NPOE	SS LIT	E-CMIS	3		NPO	ESS C2	
0730 _{DN} CMIS MSU Ø AMSU-A		DAA-K				NOA	A-M													
NCC PR/TMI	7	RMM (35 inc	¢)	D,	stani	ial C	on		GPI	A Core	(65 in	9)			Replac	ement	Era		
NSS PR/TMI DPR/ATMI							AQUA	ар		911	,1 0010	(00 111	י <u>י</u>	***	·	****	***	****	****	~~~
O I O O DIT	MSR-I		•			EOS	AQUA			NASA	A-GPM	I				Replac	ement	Era		
4000	N-CMI MSR-					A	DEOS 1	I			COM-	R1		~~~	****		~~~	~~~~	~~~~	~~~
(1030DN + ?15?) A		-														Replac	omont	Ero.		
TBD E-CMR											ro-GPI			 			~~~	****	~~~	****
(0230DN) TBD E-CMR				KF						Eu	ro-GPI	M II		800		Replac	ement	Era	~~~	~~~
(1430AN)		L				W. C.				Pa	rtner-(SPM I				Replac	ement	Era		
TBD P-CMR I (1730AN)							quencie quencie			Pa	rtner-(SPM II			$\overline{}$	Replac	ement	Era	\sim	\sim
<i>TBD</i> P-CMR II (2030AN)							1		ECHA					888						~~~
NSS MADRAS										IKUP	IQUES	(20 in	(c)							
TBD TBD								FY-3			·	****			****	<u> </u>	***	***	∞	
	5.7				HITCH HIS									726					N	ASA

GPM Science for Industry: Eric Smith

TRMM Era Constellation Coverage

3-hour sensor ground trace

TRMM + DMSP(F14) + DMSP(F15)

EOS Era Constellation Coverage

3-hour sensor ground trace

TRMM + DMSP(F15) + DMSP(F16) + AQUA + ADEOS II

GPM Systematic Measurement Coverage (Core + 6 constellation members)

3-hour sensor ground trace

GPM Core + MEGHA-TROP + DMSP(F18) + DMSP(F19) + GCOM-B1 + NASA-GPM I + Euro-GPM I & II + Partner-GPM I & II

Why Measure Rain?

Why Study & Try to Understand Global Water Cycle?

- Rain is True Global Variable
 - [i.e., its variability is anisotropic and heterogeneous]
- Rain is 1 of 3 Foremost Weather Prediction Variables [along with temperature & wind]
- Rain Causes Floods
- Rain is Major Climate Change Variable
- Rain through Latent Heating is Principle Determinant of General Circulation
- Rain is Key Forcing Variable for Eco-Hydrometeorological Modeling
- Rain is 1 of 3 Primary Controls on Air-Sea Moisture Fluxes [along with ΔT & surface wind]
- Rain is By-Product of Microphysical Processes -- Perhaps Least Understood Physics Component of Modern Cloud-Weather-Climate Prediction Models
- Rain Manifests Itself within Differing Macrophysical Cloud Systems (connective, stratiform, frontal, orographic &/or warm) whose Spatial-Temporal Distributions are Poorly Understood
- Rain Affects Most Everyone's Life & Work -- GPM Offers Possibility that Everyone can Obtain Precipitation Data using Internet-like Access Facilities

Why GPM?

past success? ply users with rain data? recycle our skills? [maybe 3 %]

Improved Measurements

Global Coverage (includes snow-ice zones)

Frequent Sampling (no worse than 3 hourly -- critical for hydromet)

Direct Detection of Microphysical Properties & Processes

[water-ice; LWC/IWC; suspended-precipitating; reff; veff]

4D Latent Heating

Morphological Classification

[convective, stratiform, frontal band, orographic &/or warm]

Improved Physical Modeling

Microphysical Process Models (via better microphysics & precip obs)

Cloud-Mesoscale Models (via better microphysics & precip obs)

NWP Models (via better data assimilation of latent heating)

Land Surface Process Models (i.e., eco-hydrometeorological models)

Ocean Salinity-Fresh Water Lens Models

Snow-Ice Accumulation Models

Model Simulations of Climate State & Climate Change

Application Models

[severe storms (hurricanes, flash floods, electrified tornadic storms); flood hazards; agriculture; transportation & communication; construction; recreation; ships at sea; energy]

Improved Technology

Advanced Multi-Frequency/Polarization, Doppler Radars Advanced Sat Constellation & Sensor Scanning Strategies Advanced-Large Real & Synthetic Aperture MW Antennas Promote Complimentary Hydrological Measurements

A Global Satellite Precipitation Observing System Would Be Optimized with Additional Global Measurements Central to Understanding & Predicting Global Water Cycle

Global Precip itation Mission (GPM) Purpose

- I. Measure Rainfall Accurately, Globally, & Often
- 2. Stimulate GWC Research Across Scale Spectrum
- 3. Underwrite Compelling Rainfal-Based Applications
- 4. Improve Space Tchnology for Rainfal & Synergistic Measurements
- 5. Deliver Effective Education/Media/Commercial Outreach Program

Better Rain Measuring	Better Sampling	Better Methodologies					
DSD-c entric with	constellation design &	marriage of measurements &					
physical validation	ŒO data infusion	prediction models					

Overarching Science & Technology Goals

Technology

- advæce multiparæneer ræin rælarinstruments
- advance SA/RA rain raliometer instruments
- move toward operational spacebased rain measuring system

Research

- understand & quantify
 GWC dynamics & variability of atmos-bio-cryo-hydro spheres
- seek dosure of mass-energy budgets at basin scales
- understand relationships
 between GWC& climate
 and underlying predictability

Applications

- improveQFF of landfalling TCs & MLCs
- improveflash flood forecasts of alpine storms
- improveprediction of fresh water resources